p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.15D4, C23⋊C8⋊7C2, C4⋊C4.15D4, (C2×D4).18D4, (C2×Q8).18D4, (C22×C4).17D4, C23.529(C2×D4), C22.D8⋊3C2, C2.11(D4⋊D4), C22.25(C4○D8), C23.11D4⋊2C2, C4⋊D4.12C22, C23.31D4⋊8C2, C22.SD16⋊14C2, (C22×C4).18C23, C22⋊Q8.12C22, C2.11(D4.9D4), C22.139C22≀C2, C23.47D4⋊27C2, C22⋊C8.117C22, C22.21(C8⋊C22), C22.32C24.2C2, C2.9(C23.7D4), C2.C42.25C22, (C2×C4).207(C2×D4), (C2×C4⋊C4).23C22, (C2×C22⋊C4).98C22, SmallGroup(128,344)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.15D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=c, f2=d, eae-1=ab=ba, ac=ca, ad=da, faf-1=abc, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >
Subgroups: 308 in 116 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2.C42, C2.C42, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, C23⋊C8, C22.SD16, C23.31D4, C23.11D4, C22.D8, C23.47D4, C22.32C24, C24.15D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8⋊C22, D4⋊D4, D4.9D4, C23.7D4, C24.15D4
Character table of C24.15D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√2 | √-2 | √2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
(3 31)(4 32)(7 27)(8 28)(9 13)(10 14)(11 24)(12 17)(15 20)(16 21)(18 22)(19 23)
(2 30)(4 32)(6 26)(8 28)(10 19)(12 21)(14 23)(16 17)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 13 29 22)(2 21 30 12)(3 11 31 20)(4 19 32 10)(5 9 25 18)(6 17 26 16)(7 15 27 24)(8 23 28 14)
G:=sub<Sym(32)| (3,31)(4,32)(7,27)(8,28)(9,13)(10,14)(11,24)(12,17)(15,20)(16,21)(18,22)(19,23), (2,30)(4,32)(6,26)(8,28)(10,19)(12,21)(14,23)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,29,22)(2,21,30,12)(3,11,31,20)(4,19,32,10)(5,9,25,18)(6,17,26,16)(7,15,27,24)(8,23,28,14)>;
G:=Group( (3,31)(4,32)(7,27)(8,28)(9,13)(10,14)(11,24)(12,17)(15,20)(16,21)(18,22)(19,23), (2,30)(4,32)(6,26)(8,28)(10,19)(12,21)(14,23)(16,17), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13,29,22)(2,21,30,12)(3,11,31,20)(4,19,32,10)(5,9,25,18)(6,17,26,16)(7,15,27,24)(8,23,28,14) );
G=PermutationGroup([[(3,31),(4,32),(7,27),(8,28),(9,13),(10,14),(11,24),(12,17),(15,20),(16,21),(18,22),(19,23)], [(2,30),(4,32),(6,26),(8,28),(10,19),(12,21),(14,23),(16,17)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,13,29,22),(2,21,30,12),(3,11,31,20),(4,19,32,10),(5,9,25,18),(6,17,26,16),(7,15,27,24),(8,23,28,14)]])
Matrix representation of C24.15D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 16 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
9 | 0 | 0 | 0 | 0 | 0 |
12 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 13 | 13 | 0 |
0 | 0 | 13 | 4 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 4 |
2 | 13 | 0 | 0 | 0 | 0 |
5 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 13 | 0 |
0 | 0 | 0 | 13 | 13 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 8 | 13 |
G:=sub<GL(6,GF(17))| [1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,1,0,16,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,1,1,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[9,12,0,0,0,0,0,2,0,0,0,0,0,0,0,0,13,0,0,0,13,13,4,8,0,0,0,13,0,0,0,0,0,0,0,4],[2,5,0,0,0,0,13,15,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,13,13,4,8,0,0,0,0,0,13] >;
C24.15D4 in GAP, Magma, Sage, TeX
C_2^4._{15}D_4
% in TeX
G:=Group("C2^4.15D4");
// GroupNames label
G:=SmallGroup(128,344);
// by ID
G=gap.SmallGroup(128,344);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,520,1123,570,521,136,1411]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=c,f^2=d,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations
Export